In silico search for modifier genes associated with pancreatic and liver disease in Cystic Fibrosis

نویسندگان

  • Pascal Trouvé
  • Emmanuelle Génin
  • Claude Férec
چکیده

Cystic Fibrosis is the most common lethal autosomal recessive disorder in the white population, affecting among other organs, the lung, the pancreas and the liver. Whereas Cystic Fibrosis is a monogenic disease, many studies reveal a very complex relationship between genotype and clinical phenotype. Indeed, the broad phenotypic spectrum observed in Cystic Fibrosis is far from being explained by obvious genotype-phenotype correlations and it is admitted that Cystic Fibrosis disease is the result of multiple factors, including effects of the environment as well as modifier genes. Our objective was to highlight new modifier genes with potential implications in the lung, pancreatic and liver outcomes of the disease. For this purpose we performed a system biology approach which combined, database mining, literature mining, gene expression study and network analysis as well as pathway enrichment analysis and protein-protein interactions. We found that IFI16, CCNE2 and IGFBP2 are potential modifiers in the altered lung function in Cystic Fibrosis. We also found that EPHX1, HLA-DQA1, HLA-DQB1, DSP and SLC33A1, GPNMB, NCF2, RASGRP1, LGALS3 and PTPN13, are potential modifiers in pancreas and liver, respectively. Associated pathways indicate that immune system is likely involved and that Ubiquitin C is probably a central node, linking Cystic Fibrosis to liver and pancreatic disease. We highlight here new modifier genes with potential implications in Cystic Fibrosis. Nevertheless, our in silico analysis requires functional analysis to give our results a physiological relevance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bone Mineral Density and Cystic Fibrosis: A Review

Cystic fibrosis (CF) is a common progressive genetic disorder among children which involves lungs, kidneys, intestine and liver. Apart from the significance of genetic factors, various environmental factors particularly bone mineral density are directly associated with CF. Remarkably, bone disease is appeared as a routine and commo...

متن کامل

Prevalence of Cystic Fibrosis Trans-membrane Conductance Regulator Gene common mutations in children with cystic fibrosis in Isfahan, Iran

Background: Cystic fibrosis (CF) is the most common lethal genetic disorder of Cystic Fibrosis Trans-membrane Conductance (CFTR) Regulator gene mutations. We aimed to investigate common mutations in CF patients and to assess its possible relationship with clinical presentations. Materials and Methods: This cross sectional study was conducted on 36 CF patients who were referred to a tertiary ped...

متن کامل

Investigating the Effect of TNF α (-863) and TNF α (-308) genes Polymorphism on the Progression of Disease in Patients with Cystic Fibrosis

Background: Recent studies have shown that the course of cystic fibrosis in patients with this disease differs despite the same mutation in CFTR gene. We aimed to investigate the role of polymorphism in TNF α (-308) and TNF α (-863), and its effect on the phenotype of the patients with cystic fibrosis and progression of disease. Materials and Methods:...

متن کامل

DNA damage and related modifier genes in Italian cystic fibrosis patients.

Cystic Fibrosis (CF) is an autosomal recessive multisystemic disorder showing a highly heterogeneous phenotype, even among siblings carrying identical CFTR mutations. Moreover, oxidative stress is of central importance in the pathogenesis of cystic fibrosis. The present study seeks to value the presence of oxidative damage in CF patients and the possible modifier effect of repair and glutathion...

متن کامل

Cystic fibrosis from genotype to phenotype: review article

Cystic fibrosis (CF) is the most common autosomal recessive genetic disease, which is caused by defection in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene. CFTR gene codes chloride channels to modulate the homeostasis of epithelial environments. Defective CFTR affects various organs such as the lungs, pancreas, intestine, liver and skin; however, lung impairment is the mai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017